За горизонтом вселенских событий
Почти сто лет назад американский астроном Весто Слайфер (Vesto Slipher, 1875—1969) обнаружил, что линии в спектрах излучения большинства галактик смещены в красную сторону. В то время космологических теорий, которые могли бы объяснить этот феномен, еще не было, равно как не существовало и общей теории относительности (ОТО). Слайфер истолковал свои наблюдения, опираясь на эффект Доплера. Получилось, что галактики удаляются от нас, причем с довольно большими скоростями.
Позже Эдвин Хаббл (Edwin Hubble, 1889—1953) обнаружил, что чем дальше галактика находится от нас, тем больше наблюдаемый сдвиг спектральных линий в красную сторону (то есть красное смещение) и, следовательно, с тем большей скоростью она улетает от Земли. Сейчас данные по красному смещению получены для десятков тысяч галактик, и почти все они удаляются от нас. Именно это открытие и позволило ученым заговорить о расширении Вселенной и о нестационарности нашего мира.
Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями с определенными размерами и стабильной структурой. Да и атомы вовсе не набухают в процессе расширения Вселенной, в отличие от свободно летающих фотонов, увеличивающих свою длину волны в процессе перемещения по расширяющемуся пространству. Куда же ушла энергия реликтовых фотонов? Почему мы можем видеть квазары, удаляющиеся от нас со сверхсветовой скоростью? Что такое темная энергия? Почему доступная нам часть Вселенной все время сокращается? Это лишь часть вопросов, над которыми думают сегодня космологи, стараясь согласовать общую теорию относительности с картиной Мира, наблюдаемой астрономами.
Альберт Эйнштейн в поиске решений своих знаменитых уравнений, описывающих сосуществование энергии и гравитации (то есть материи и кривизны четырехмерного пространства-времени), пренебрег фактом расширения и представил миру в первых публикациях по ОТО стационарную, бесконечную и неизменную Вселенную. Более того, когда российский математик и геофизик А.А. Фридман (1888—1925) нашел «расширяющиеся» и «пульсирующие» решения для уравнений, Эйнштейн долго не признавал такой сценарий развития Вселенной и правомочность найденных решений. Однако дальнейшие математические исследования уравнений, которые называются системой уравнений Гильберта — Эйнштейна и описывают весь мир в целом, показали, что Александр Фридман прав и Вселенная совсем не обязана быть бесконечной и стационарной.
Теория и эксперимент стали соответствовать друг другу, а заодно выяснилось, что удаляющиеся галактики не движутся, подобно тому, как мы ходим по комнате или как Луна вращается вокруг Земли, а удаляются от нас из-за расширения самого пространства. Обычно это иллюстрируют с помощью растягивающейся резиновой пленки или воздушного шарика. Здесь, впрочем, тоже есть некий нюанс, который часто сбивает многих с толку. Если нарисовать галактику на шарике и начать его надувать, то ее изображение тоже будет увеличиваться. При расширении Вселенной такого не происходит. Галактика — это гравитационно-связанная система, она не участвует в космологическом расширении. Так что в иллюстрации с шариком галактику лучше не рисовать на нем, а приклеить «ее» к шарику в одной точке. Но поскольку на самом деле галактики ни к чему не приклеены и могут двигаться в пространстве, то еще лучше представлять их как капли воды на поверхности раздувающегося шарика. Капли-галактики в этом случае не расширяются, но могут свободно перемещаться по нему с некоторой собственной скоростью.
Для более наглядного представления процесса расширения удобно ввести систему отсчета, нарисовав на шаре координатную сетку. Если бы галактики были «приклеены» к такому раздувающемуся шарику-пространству, то их координаты не изменялись бы, и расширение сводилось бы лишь к модификации свойств самой системы координат. Однако реальное расстояние между галактиками, измеряемое, например, с помощью линейки, света или радиолокатора, при этом все же увеличивается, поскольку размер линейки не изменяется при космологическом расширении, а скорость света и радиоволн не зависит от того, насколько растянулась пленка пространства-шарика. В этом плане наше пространство совсем не похоже на резиновую пленку, утончающуюся при растяжении и заставляющую упругие волны бегать по ней с возрастающей скоростью.
Эффект Доплера и красное смещение В обычной жизни мы постоянно сталкиваемся с эффектом Доплера. Когда мимо несется машина с включенной сиреной, то частота ее звука меняется при движении. Этот эффект связан с обычным движением в воздухе, и величина сдвига частоты зависит от скорости источника в момент излучения. Пусть источник приближается к нам. Тогда каждый новый гребень звуковой волны будет приходить к нам раньше, чем если бы источник был неподвижен. Поэтому мы и слышим изменение тона сирены. Световой эффект Доплера несколько отличается от звукового. Однако для малых скоростей формулы для светового и звукового эффекта Доплера совпадают. В эффекте Доплера после того, как фотон испущен, с ним уже ничего не происходит. В случае космологического красного смещения дело обстоит совсем по-другому, поскольку это смещение является эффектом не специальной, а общей теории относительности и связано именно с расширением пространства.
Согласно ОТО пространство расширяется, рождаясь как бы из ничего, в силу тех законов, которым оно подчиняется. Именно этот процесс, с учетом свойств всего того, что находится в пространстве, и описывают уравнения Гильберта — Эйнштейна. Поведение света, атомов, молекул, твердых тел, жидкостей и газов слабо зависит от локальной кривизны пространства-времени и существенно изменяется только в особо сильных гравитационных полях, наподобие тех, что встречаются вблизи черных дыр. В большей же части Вселенной, как полагают ученые, основные процессы происходят почти так же, как и на Земле, и получается, что галактики вполне реально удаляются друг от друга из-за расширения пространства, в котором они находятся. Космические корабли движутся, а свет распространяется по тому пространству, которое есть, и если его станет больше, это будет заметно, хотя бы по тому времени, которое им придется затратить, путешествуя из одной галактики в другую.
Превращения фотона
Свет всегда излучается с некоторой определенной длиной волны и энергией кванта. Но, распространяясь в расширяющейся Вселенной, он как бы растягивается, «краснеет». В случае сжатия Вселенной наблюдался бы обратный эффект — посинение. Если когда-то давно какая-либо галактика излучила фотон с некой длиной волны, а сейчас мы его видим, как фотон с другой длиной волны, то, исходя из красного смещения, равного разности этих длин, поделенной на исходную длину волны фотона, можно сказать, во сколько раз за это время растянулась Вселенная. Для этого нужно к красному смещению прибавить единицу: если оно равно 2, то, значит, Вселенная растянулась в три раза с того момента, когда был излучен фотон.
Важно отметить, что при этом сравниваются размеры (космологи говорят о масштабном факторе) в момент излучения и в момент приема фотона. А вот то, что происходило между этими моментами, не так существенно: Вселенная могла раздаваться с постоянной скоростью, могла расширяться то быстрее, то медленнее, могла вообще в какой-то момент сжиматься. Важно только то, что за это время все космологические расстояния возросли в три раза. Именно об этом говорит красное смещение, равное 2.
«Растяжение» фотона по дороге от источника к наблюдателю принципиально отличается от обычного эффекта Доплера. Рассмотрим движущийся с некоторой скоростью космический корабль, излучающий световые волны во все стороны. В этом случае наблюдатели, находящиеся впереди корабля, будут видеть посиневшие фотоны, то есть фотоны с большей энергией, а наблюдатели позади увидят покрасневшие фотоны с меньшей энергией. В сумме же энергия всех фотонов будет неизменной — сколько джоулей корабль излучил, столько же все наблюдатели и уловили. В космологии все по-другому. Излучающая во все стороны галактика для находящихся по разные стороны (но на равном расстоянии) наблюдателей будет выглядеть одинаково покрасневшей. Хотя с точки зрения обычной логики такое рассуждение кажется странным. И в этом плане космологическое красное смещение похоже на гравитационное, при котором фотоны краснеют, преодолевая поле притяжения испустившей их звезды.
Таково свойство Вселенной: кинетическая энергия всех частиц и волн — галактик, пылинок, протонов, электронов, нейтрино, фотонов и даже гравитационных волн уменьшается из-за расширения пространства. Это явление напоминает некоторые эффекты, наблюдаемые в нестационарных и незамкнутых системах. Известно, что если в системе фундаментальные константы зависят от времени, то энергия не сохраняется. Например, в мире с периодически изменяющейся гравитационной постоянной можно было бы поднимать груз, когда постоянная мала, и сбрасывать — когда велика. В результате получился бы выигрыш в работе, то есть стала бы возможной добыча энергии за счет непостоянства гравитационной постоянной.
В нашем мире от времени зависит сама метрика пространства, поскольку Вселенная расширяется. Находясь в нестационарном мире, можно констатировать, что энергия фотона в расширяющейся Вселенной падает. К счастью, все глобальные физические изменения у нас происходят крайне медленно и на обычной жизни никак не сказываются.
Линейка для Вселенной: Следует заметить, что любые связанные объекты не участвуют в космологическом расширении. Длина эталонного метра, находящегося в Палате мер и весов (и его современного лазерного аналога), не изменяется с течением времени. Именно поэтому и можно говорить об увеличении физического расстояния между галактиками, которое можно этим (постоянным!) метром измерить. Наиболее близкое к общепринятому пониманию — это так называемое собственное расстояние. Для его определения необходимо, чтобы множество наблюдателей, расположенных на линии, соединяющей две галактики, провели одновременное измерение расстояний, отделяющих их друг до друга, с помощью обычных линеек. Затем все эти данные надо передать в единый центр, где, сложив все результаты, можно будет определить, каким было расстояние во время измерения. Увы, но к моменту получения результата оно уже изменится за счет расширения. К счастью, астрономы научились по видимому блеску источников известной светимости вычислять собственное расстояние. Очень часто о расстоянии говорят в терминах красного смещения. Чем больше красное смещение, тем больше расстояние, причем для каждой космологической модели выведены свои формулы, связывающие эти две величины. Например, квазар GB1508+5714 с красным смещением 4,3 в общепринятой сейчас модели Вселенной расположен на расстоянии 23 миллиарда световых лет от нашей Галактики. Приходящий сегодня от него свет был испущен всего через миллиард лет после Большого взрыва и находился в пути около 13 миллиардов лет. Возраст Вселенной в этой модели составляет 14 миллиардов лет.
Скорость удаления галактики за счет космологического расширения может быть любой, в том числе и больше скорости света. Дело в том, что она при этом никуда не движется по пространству (ее координаты на раздувающемся шарике не меняются). Кинетическая энергия с этой скоростью не связана, поэтому при замедлении расширения Вселенной никакая энергия не выделяется. Галактика, разумеется, может иметь и «обычную» скорость, например, за счет гравитационного взаимодействия с другими галактиками. В космологии такую скорость называют пекулярной. Разумеется, в реальной жизни астрономы наблюдают суммарный эффект: галактика имеет красное смещение, связанное с космологическими процессами, а в дополнение к этому фотоны испытывают красное (или синее) смещение за счет эффекта Доплера, связанного с пекулярной скоростью. Иногда добавляется еще и гравитационное красное смещение, вызванное собственным полем тяжести светящегося объекта. Разделить эти три эффекта для индивидуального источника нелегко. Заметим, что для небольших во вселенском масштабе расстояний формула, связывающая красное смещение и скорость разбегания, совпадает с формулой для обычного эффекта Доплера. Порой это даже приводит к путанице, поскольку физика эффектов различна, и для больших расстояний формулы сильно отличаются. Красное смещение является очень удобной и общепринятой величиной для обозначения того, как далеко в пространстве и как давно во времени произошло то или иное событие, наблюдаемое сегодня земными астрономами.
Как же это возможно?
Часто даже профессионалы (физики, астрономы) на вопрос: «Можно ли наблюдать галактику, которая и в момент излучения ею света, и в момент приема ее сигнала на Земле удаляется от нас быстрее света?» — отвечают: «Конечно, нельзя!» Срабатывает интуиция, основанная на специальной теории относительности (СТО), которую один космолог метко назвал «тени СТО». Однако этот ответ неправильный. Оказывается, все-таки можно. В любой космологической модели скорость убегания линейно растет с расстоянием. Это связано с одним из важнейших принципов — однородностью Вселенной. Следовательно, существует такое расстояние, на котором скорость убегания достигает световой, а на больших расстояниях она становится сверхсветовой. Та воображаемая сфера, на которой скорость убегания равна световой, называется сферой Хаббла.
«Как же это возможно! — воскликнет читатель. — Неужели специальная теория относительности неверна?» Верна, но противоречия здесь нет. Сверхсветовые скорости — вполне реальны, когда речь идет не о переносе энергии или информации из одной точки пространства в другую. Например, солнечный зайчик может двигаться с любой скоростью, нужно только установить экран, по которому он бежит, подальше. СТО «запрещает» лишь передачу информации и энергии со сверхсветовой скоростью. А для переноса информации нужен сигнал, распространяющийся по пространству, — расширение самого пространства тут ни при чем. Так что в нашем примере про удаляющиеся галактики с теорией относительности все в полном порядке: со сверхсветовой скоростью они удаляются лишь от земного наблюдателя, а по отношению к окружающему пространству их скорость может вообще быть нулевой.
Удивительно то, что мы можем увидеть галактики, улетающие от нас быстрее света. Это возможно потому, что скорость расширения Вселенной не была постоянной. Если в какой-то период она уменьшится и свет сможет «добежать» до нашей Галактики, то мы увидим сверхсветовой источник. Этот пример прекрасно иллюстрирует то, что судьба фотона зависит от того, как ведет себя Вселенная во время его движения по ней. Допустим, что в момент излучения фотона галактика-источник удалялась от нас быстрее света. Тогда, хотя фотон и был испущен в нашу сторону, двигаясь по растягивающейся координатной сетке, он будет удаляться от нас за счет раздувания Вселенной. Если темп расширения уменьшается, то вполне возможно, что в какой-то момент скорость убегания (в том месте, где в это время находится фотон) станет меньше скорости света. Тогда свет начнет приближаться к нам и в конце концов может достичь нас. Сама галактика-источник в момент «разворота» света удаляется от нас все еще быстрее света (потому что она гораздо дальше фотона, а скорость растет с расстоянием). В момент приема фотона ее скорость тоже может быть больше световой (то есть она будет находиться за сферой Хаббла), но это не помешает ее наблюдению.
Большой бабах: Словосочетание Big Bang, использованное Фредом Хойлом (Fred Hoyle) в 1950 году во время его радиоинтервью на BBC, было впоследствии переведено на русский именно как Большой взрыв (на самом деле словосочетанием «Большой взрыв» корректно переводить лишь Big Explosion). Так началась путаница, отсутствующая в английском языке. Слово Bang не означает собственно «взрыв». Оно используется в комиксах для обозначения удара или взрыва. Это, скорее, нечто вроде «бабах» или «бум». Слово «взрыв» вызывает вполне конкретные ассоциации, поэтому в связи с Большим взрывом и возникают вопросы «что взорвалось?», «где?», «от чего?» и тому подобные. На самом деле Big Bang совсем не похож на взрыв. Во-первых, взрыв обычно происходит в нашем привычном пространстве и связан с разницей в давлении. Как правило, эта разница обеспечивается колоссальным отличием в температуре. Ее повышение обеспечивается быстрым выделением большого количества энергии за счет какой-либо химической или ядерной реакции. Большой взрыв в отличие от обычного не связан с какой-либо разницей в давлении. Он привел в первую очередь к рождению самого пространства с веществом, а уже потом к расширению пространства и последующему разлету вещества. Нельзя указать и «точку», в которой он произошел.
Во Вселенной, заполненной веществом (такая Вселенная всегда расширяется с замедлением), можно детально рассчитать все эти критические параметры. Если бы наш мир был таким, то галактики, для которых красное смещение больше 1,25, излучили принимаемый нами сейчас свет в тот момент, когда их скорость была больше скорости света. Современная сфера Хаббла для простейшей модели Вселенной, заполненной веществом (то есть без вклада темной энергии), имеет радиус, соответствующий красному смещению, равному 3. И все галактики с большим смещением начиная с момента излучения до нашего времени удаляются от нас быстрее света.
Граница наблюдений
В космологии говорят о трех важных поверхностях: горизонте событий, горизонте частиц и сфере Хаббла. Две последние являются поверхностями в пространстве, а первая — в пространстве-времени. Со сферой Хаббла мы уже познакомились, поговорим теперь о горизонтах. Горизонт частиц отделяет наблюдаемые в настоящий момент объекты от ненаблюдаемых. Поскольку Вселенная имеет конечный возраст, то свет от далеких объектов просто еще не успел до нас дойти. Этот горизонт все время расширяется: время идет, и мы «дожидаемся» сигналов от все более и более далеких галактик. Горизонт частиц удаляется, он как бы убегает от нас со скоростью, которая может быть и больше скорости света. Благодаря этому мы видим все больше и больше галактик.
Заметим, что современное расстояние до «галактик на краю наблюдаемой Вселенной» нельзя определять как произведение скорости света на возраст Вселенной. В любой модели расширяющейся Вселенной это расстояние будет больше такого произведения. И это вполне понятно. Такое расстояние прошел сам свет, но Вселенная за это время успела расшириться, поэтому современное расстояние до галактики больше пути, пройденного светом, а в момент излучения это расстояние могло быть существенно меньше этого пути.
Источники на горизонте частиц имеют бесконечное красное смещение. Это самые древние фотоны, которые хотя бы теоретически можно сейчас «увидеть». Они были излучены практически в момент Большого взрыва. Тогда размер видимой сегодня части Вселенной был крайне мал, а значит, с тех пор все расстояния очень сильно выросли. Отсюда и возникает бесконечное красное смещение.
Конечно, на самом деле мы не можем увидеть фотоны с самого горизонта частиц. Вселенная в годы своей молодости была непрозрачной для излучения. Поэтому фотоны с красным смещением больше 1 000 не наблюдаются. Если в будущем астрономы научатся регистрировать реликтовые нейтрино, то это позволит заглянуть в первые минуты жизни Вселенной, соответствующие красному смещению — 3х107. Еще большего прогресса можно будет достичь при детектировании реликтовых гравитационных волн, добравшись до «планковских времен» ($10^{-43}$ секунд с начала взрыва). С их помощью можно будет заглянуть в прошлое настолько далеко, насколько это в принципе возможно с помощью известных на сегодня законов природы. Вблизи начального момента Большого взрыва общая теория относительности уже неприменима.
Горизонт событий — это поверхность в пространстве-времени. Такой горизонт возникает не во всякой космологической модели. Например, в описанной выше замедляющейся Вселенной горизонта событий нет — любое событие из жизни удаленных галактик можно увидеть, если достаточно долго подождать. Смысл введения этого горизонта в том, что он отделяет события, которые могут повлиять на нас хотя бы в будущем, от тех, которые никак повлиять на нас не смогут. Если даже световой сигнал о событии не доходит до нас, то и само событие не может оказать на нас влияние. Можно представить себе это как межгалактическую трансляцию футбольного матча, происходящего в далекой галактике, сигнал которой мы никогда не получим. Почему такое возможно? Причин может быть несколько. Самая простая — модель с «концом света». Если будущее ограничено во времени, то ясно, что свет от каких-то далеких галактик дойти до нас просто не сумеет. Большинство современных моделей такой возможности не предусматривают. Есть, правда, версия грядущего Большого разрыва (Big Rip), но она не очень популярна в научных кругах. Зато есть другой вариант — расширение с ускорением. В таком случае некоторые нелюбители футбола попросту «убегут от света»: для них скорость расширения будет сверхсветовой.
Причуды черной королевы
Получается, что расширяющаяся Вселенная в чем-то похожа на страну Черной королевы, в которую попала Алиса в сказке Льюиса Кэрролла «Алиса в Зазеркалье». Там, чтобы устоять на месте, нужно было очень быстро бежать.
Допустим, что имеется галактика, обладающая большой собственной скоростью, направленной на нас. В этом случае в ее полное спектральное смещение будут вносить вклад два эффекта: космологическое красное расширение и синее смещение из-за эффекта Доплера за счет ее собственной скорости.
Первый вопрос такой: как будет изменяться расстояние до галактики с нулевым смещением спектра? Ответ: галактика будет от нас удаляться. Второй вопрос: представим себе галактику, расстояние до которой не изменяется из-за того, что ее собственная скорость полностью скомпенсировала эффект расширения (это как раз похоже на Алису, бегущую по стране Черной королевы). Галактика перемещается по нашей нарисованной координатной сетке с такой же скоростью, с какой сетка раздувается. Каким будет смещение спектра такой галактики? Ответ: смещение будет синим. То есть линии в спектре такой галактики будут смещены в сторону более коротких волн.
Побеждающая гравитация: Говоря о «большой Вселенной», часто полагают, что вещество равномерно распределено в пространстве. В первом приближении это верно. Однако не стоит забывать и о таких «возмущениях», как галактики и их скопления. Они образуются из первичных флуктуаций плотности. Если в равномерно распределенном веществе возникает шар с чуть большей плотностью, то, не учитывая эффектов, связанных с температурой, можно сказать, что шар начнет сжиматься, а плотность вещества — расти. В простейшей модели расширяющейся Вселенной, в которой вклад темной энергии равен нулю, ничего принципиально не изменяется. Любое возмущение плотности в такой пылевой Вселенной (для реального газа, а не пыли нужно, чтобы масса возмущения превзошла некоторую критическую величину — так называемую массу Джинса) приведет к тому, что вещество «выпадет» из расширения Вселенной и образует связанный объект. Если же вклад темной энергии не нулевой, то флуктуации плотности с самого начала должны иметь величину больше некоторой критической, иначе контраст плотности не успеет возрасти до нужного значения, и вещество не «выпадет» из Хаббловского потока. Подобно тому, как энергия фотона уменьшается за счет расширения, кинетическая энергия частичек пыли также будет уменьшаться со временем по мере расширения Вселенной. Из-за этого, пока флуктуация не отделилась полностью от общего расширения Вселенной, процесс «схлопывания» возмущения будет идти медленнее, чем без учета расширения. Вместо экспоненциального роста плотности будет наблюдаться степенной ее рост. Как только контраст плотности достигнет некоторого критического значения, флуктуация как бы «забудет» про расширение Вселенной.
Столь неожиданное поведение спектра излучения обусловлено тем, что здесь имеют место два физических эффекта, описывающихся разными формулами. Для источника, находившегося на сфере Хаббла, в момент излучения в простейшей модели замедляющейся Вселенной красное смещение равно 1,25, а скорость убегания равна скорости света. Значит, чтобы оставаться на неизменном расстоянии от нас, источник должен иметь собственную скорость, равную скорости света. А к собственным (пекулярным) скоростям надо применять формулу для релятивистского эффекта Доплера, которая для скорости источника, равной скорости света и направленной на нас, дает бесконечно большое синее смещение. Смещение спектральных линий за счет эффекта Доплера оказывается значительнее космологического и для галактик на меньших расстояниях. Таким образом, покоящийся источник будет иметь синее смещение, а звезда с нулевым смещением будет от нас удаляться.
Конечно, галактики не могут иметь околосветовые собственные скорости. Зато некоторые квазары и галактики с активными ядрами порождают джеты — струи вещества, бьющие на расстояния в миллионы световых лет. Скорость вещества в такой струе может быть близка к скорости света. Если струя направлена на нас, то за счет эффекта Доплера мы можем увидеть синее смещение. Кроме того, вещество должно вроде как приближаться к нам. Однако в свете того, что было написано выше, второй вывод не столь очевиден. Если источник находится достаточно далеко, то космологическое расширение все равно «унесет» вещество от нас, даже если его скорость очень близка к световой и струя видна нам «посиневшей». Только в космологии возникает такая абсурдная на первый взгляд ситуация, когда удаляющийся от нас объект имеет синее смещение. Например, квазар GB1508+5714, имеющий красное смещение 4,3, удаляется от нас в 1,13 раза быстрее света. Значит, вещество его джета, двигающееся в нашу сторону с большой собственной скоростью, удаляется от нас, так как скорость частиц не может превосходить скорость света.
Неизвестное будущее
Недавнее открытие того факта, что Вселенная сейчас расширяется с ускорением, буквально взбудоражило космологов. Причин такого необычного поведения нашего мира может быть две: либо основным «наполнителем» нашей Вселенной является не обычное вещество, а неведомая материя с необычными свойствами (так называемая темная энергия), либо (еще страшнее подумать!) нужно изменять уравнения общей теории относительности. Да еще почему-то человечеству довелось жить в тот краткий по космологическим масштабам период, когда замедленное расширение только-только сменилось ускоренным. Все эти вопросы еще очень далеки от своего разрешения, но уже сегодня можно обсудить то, как ускоренное расширение (если оно будет продолжаться вечно) изменит нашу Вселенную и создаст горизонт событий. Оказывается, что жизнь далеких галактик, начиная с того момента, как они наберут достаточно большую скорость убегания, для нас остановится и их будущее станет нам неизвестно — свет от целого ряда событий просто никогда до нас не дойдет. Со временем, в достаточно далеком будущем, все галактики, не входящие в наше локальное сверхскопление размером 100 мегапарсек, скроются за горизонтом событий: все ускоряющееся расширение «утянет» туда соответствующие им точки на координатной сетке.
Тут, кстати, хорошо видна разница между горизонтом частиц и горизонтом событий. Те галактики, что были под горизонтом частиц, так под ним и останутся, свет от них будет продолжать доходить. Но чем ближе становится скорость галактики к скорости света, тем больше времени нужно свету, чтобы дойти до нас, и все события в такой галактике покажутся нам растянутыми во времени. Условно говоря, если в такую галактику поместить часы, которые к моменту ее ухода за горизонт событий должны показывать 12 часов дня, то земным наблюдателям будет виден бесконечно замедляющийся ход этих часов. Сколько бы мы ни смотрели (теоретически такая галактика «с часами» никогда не исчезнет с нашего небосклона), мы никогда не увидим стрелки часов ровно на «двенадцати» — последний оборот она будет совершать бесконечно долго по нашим собственным часам. Подождав длительное время, мы увидим то, что происходило в галактике (по ее часам) в 11 ч 59 м, в 11 ч 59 м 59 с и так далее. Но то, что произошло на ней после «полудня», останется скрытым от нас навсегда. Это очень похоже на наблюдение за часами, падающими в черную дыру.
Аналогично, возможно, рассуждает и наблюдатель в этой далекой галактике. Он сейчас видит нашу галактику в ее прошлом, но с какого-то момента времени наша история станет недоступной для него, поскольку наши сигналы перестанут доходить до этой галактики. Забавно, что для общепринятого набора космологических параметров такие галактики находятся в общем-то недалеко. Их красное смещение должно быть более 1,8. То есть они могут находиться даже внутри сферы Хаббла, но послать им весточку человечество уже опоздало.
Вот такие парадоксальные с точки зрения здравого смысла явления происходят в нашей Вселенной. Их необычность связана с тем, что привычные понятия скорости, расстояния и времени в космологии приобретают несколько иной смысл. К сожалению, пока ученые не пришли к какому-то общему мнению о том, какой жизнью живет наша Вселенная и что с ней в принципе может случиться. Ведь даже специалистам расширение границ здравого смысла дается очень непросто.
Сергей Попов, кандидат физико-математических наук
Алексей Топоренский, кандидат физико-математических наук
Комментарии (4):
Вот что интересно. Если фотон растягивается вместе с пространством, и это заметно, значит существует ещё одно пространство, относительно которого и становится заметным это расширение. Иначе. Если растянуть стальной стержень совместно с линейкой, то относительно линейки он не растянется.
Наблюдение сверхновых типа Ia показало, что космологическое красное смещение не совпадает с вычислениями по эффекту Доплера (теория Большого взрыва), а подчиняется экспоненциальному закону затухающих колебаний, где постоянная Хаббла представляет показатель затухания электромагнитных колебаний. Т.е. постоянная Хаббла - это квантовая величина, на которую уменьшается частота фотона за один период колебания. Чтобы определить, насколько уменьшилась частота фотона, надо постоянную Хаббла умножить на число совершенных колебаний, что полностью соответствует результатам, полученным современным методом "стандартных свеч" (Нобелевская премия за 2011 год).
Статья в журнале "Инженерная физика" (№3, 2014) "Квантовый закон Хаббла": http://alemanow.narod.ru/hubble.htm
Только зарегистрированные пользователи могут оставлять комментарии. Войдите или зарегистрируйтесь пожалуйста.
какого года статья?