Отсортированно по тегу "Вселенная", найдено 26 записей

Голографическая ВселеннаяИнформация в голографической Вселенной

На вопрос «из чего состоит физический мир» вам скорее всего ответят – «из вещества и энергии». Однако образованный человек непременно упомянет и об информации, которая играет ключевую роль в живой и даже неживой природе. Согласно же теории Джона Уилера (John A. Wheeler) из Принстонского университета, физический мир состоит именно из информации, а вещество и энергия играют в нем второстепенную роль.

читать

11 Марта 2011, 3:32    Den

Голографическая ВселеннаяИллюзия гравитации

Возможно, сила тяготения и одно из пространственных измерений возникают в результате взаимодействия частиц и полей, существующих в трехмерном мире. Всем нам хорошо знакомы три пространственных измерения: вверх-вниз, влево-вправо и вперед-назад. Четырехмерную комбинацию пространства и времени принято называть пространством-временем. Таким образом, мы живем в четырехмерной вселенной. Так ли это?

читать

8 Июля 2011, 18:44    Oleg

Голографическая ВселеннаяВселенная как голограмма

Возможно, ли распространить голографический подход, уходящий корнями в термодинамику чёрных дыр на описание динамики Вселенной? Начнем с простых оценок. Сравним близость к чёрной дыре Земли, Солнца и видимой Вселенной. Рассмотрим гравитационный (шварцшильдовский) $r_g$ и физический $R$ радиусы Земли и Солнца. Для Солнца $R\simeq 7\times 10^{5}$ км, а $r_g\simeq 3$ км. Для Земли $R\simeq 6400$ км, а $r_g\simeq 0.884 $ cм.

Эти объекты совсем не похожи на чёрную дыру. Выполним аналогичную оценку для видимой части Вселенной, приняв за ее размер хаббловский радиус $R_{H}=cH^{-1}$ $$r_{g,univ}=\frac{2GM_{univ}}{c^2};$$ $$R_{H}=cH^{-1};$$ $$M_{univ}=\frac{4\pi }{3}R_H^{3}\rho;$$ $$H^2=\frac{8\pi G}{3}\rho \to \rho =\frac{3H^2}{8\pi G};$$ $$M_{univ}=\frac{4\pi }{3}R_H^3\frac{3H^2}{8\pi G}=\frac{c^2R_H}{2G};$$ $$R_H=\frac{2GM_{univ}}{c^2}=r_{g,univ}$$ Впечатляющее 'совпадение', позволяющее использовать при голографическом описании

Вселенной аргументацию термодинамики чёрных дыр. Как мы видели выше, ключевым местом голографического подхода является исключение гравитации из числа фундаментальных сил и придание ей статуса энтропийной силы.

Используя данную аналогию можно приписать поверхности хаббловского радиуса температуру Хокинга. Оценим температуру хаббловской сферы, рассматривая ее как голографический экран. Для требуемой оценки воспользуемся 'близостью' видимой Вселенной к чёрной дыре. Преобразуем эту формулу, используя первое уравнение Фридмана $$T_{BH}=\frac{\hbar c^3}{8\pi Gk_{_B}M}=\frac{1}{3}\frac{\hbar c^3}{k_{_B}}\frac{\rho }{MH^2}=\frac 13\frac{\hbar c^3}{k_{_B}}\frac 1 {VH^2}$$ Подставляя $V=\frac{4\pi }{3}R_H^3$ и учитывая, что хаббловский радиус равен $R_H=cH^{-1},$ получим для температуры хаббловской сферы $$T_{H}=\frac{\hbar H}{4\pi k_{_B}}\sim 10^{-30} K$$ Как будет показано ниже, не составляет труда получить уравнения Фридмана, описывающие динамику Вселенной из голографического принципа, не привлекая представлений о гравитации и уравнений Эйнштейна. Будет показано что они получаются аналогично уравнениям Ньютона, при условии если в качестве голографического экрана принимать хаббловский радиус.

Предложение не рассматривать гравитацию как фундаментальную силу природы имеет длинную историю. Первая идея была предложена Сахаровым в 1967 году. Эта идея получила дальнейшее развитие после открытия в 70-е годы термодинамических свойств чёрных дыр.

Геометрические особенности термодинамических величин чёрных дыр привели Якобсона к интересному вопросу: можно ли вывести уравнения Эйнштейна для гравитационного поля из термодинамики. Оказывается это действительно возможно, и ниже мы продемонстрируем, как эта возможность может быть реализована с помощью современной 'голографической техники'.

Этот обзор является продолжением

читать

26 Декабря 2010, 14:05    Den

Научно-популярноеТемная Вселенная

В повседневной жизни мы оперируем масштабами пространства и времени, которые можем преодолеть, но человеческое воображение позволяет заглянуть в недоступные глазу уголки Мира. Когда же отказывает и воображение, все, что остается в арсенале человека для познания Мира - физические теории, позволяющие понять, как работает то, что нас окружает.

Изучая физическую систему, мы фактически пытаемся описать «черный ящик». «Входной сигнал» - исходные данные - нам либо известен, либо мы можем его предположить. Пропуская этот сигнал через построенную на основании разумных предположений модель «черного ящика», мы получим «выходной сигнал», который можно сравнить с наблюдениями. В случае совпадения мы говорим, что теория хорошо описывает реальность. В противном случае следует пересмотреть либо модель, либо «входной сигнал», а возможно и то, и другое. Иногда, впрочем, мы знаем, как именно работает черный ящик, и можем варьировать только сигналы.

Приведенная аналогия ярко реализуется в космологии – науке о крупномасштабной эволюции Вселенной и ее структуре. Попробуем хотя бы в общих чертах разобраться в идеях этой теории.

читать

13 Января 2011, 3:07    Den

Стандартная Космологическая МодельИзмерения и представления о Вселенной

Революционные достижения как в теории, так и в технологии привели космологию к самому плодотворному периоду с момента ее открытия. Были идентифицированы неожиданные компоненты Вселенной и протестированы идеи, многообещающие с точки зрения понимания ее основ. Была обнаружена глубокая связь между физикой масштаба микромира и физикой максимально известных нам размеров.

читать

14 Ноября 2011, 6:05    Den